Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E.

نویسندگان

  • Gary Lawrence
  • Jiafu Wang
  • C K N Kwo Chion
  • K Roger Aoki
  • J Oliver Dolly
چکیده

The unique ability of a family of botulinum neurotoxins to block neuroexocytosis specifically-by selective interaction with peripheral cholinergic nerve endings, endocytotic uptake, translocation to the cytosol, and enzymic cleavage of essential proteins-underlies their increasing therapeutic applications. Although clinical use of type A is most widespread due to its prolonged inactivation of the synaptosomal-associated protein of 25 kDa, botulinum neurotoxin E cleaves this same target but at a different bond and exhibits faster onset of neuromuscular paralysis. Herein, insights were gained into the different dynamics of action of types A and E toxins, which could help in designing variants with new pharmacological profiles. Natural and recombinant type E dichain forms showed similar proteolytic and neuromuscular paralytic activities. The neuroparalysis induced by type E toxin was accelerated between 21 and 35 degrees C and attenuated by bafilomycin A1. Temperature elevation also revealed an unanticipated bipartite dose response indicative of two distinct internalization processes, one being independent of temperature and the other dependent. Although elevating the temperature also hastened intoxication by type A, a second uptake mechanism was not evident. Increasing the frequency of nerve stimulation raised the uptake of type E via both processes, but the enhanced trafficking through the temperature-dependent pathway was only seen at 35 degrees C. These novel observations reveal that two membrane retrieval mechanisms are operative at motor nerve terminals which type E toxin exploits to gain entry via an acidification-dependent step, whereas A uses only one.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional Dissection of the Clostridium botulinum Type B Hemagglutinin Complex: Identification of the Carbohydrate and E-Cadherin Binding Sites

Botulinum neurotoxin (BoNT) inhibits neurotransmitter release in motor nerve endings, causing botulism, a condition often resulting from ingestion of the toxin or toxin-producing bacteria. BoNTs are always produced as large protein complexes by associating with a non-toxic protein, non-toxic non-hemagglutinin (NTNH), and some toxin complexes contain another non-toxic protein, hemagglutinin (HA)...

متن کامل

Control of autophagosome axonal retrograde flux by presynaptic activity unveiled using botulinum neurotoxin type a.

Botulinum neurotoxin type A (BoNT/A) is a highly potent neurotoxin that elicits flaccid paralysis by enzymatic cleavage of the exocytic machinery component SNAP25 in motor nerve terminals. However, recent evidence suggests that the neurotoxic activity of BoNT/A is not restricted to the periphery, but also reaches the CNS after retrograde axonal transport. Because BoNT/A is internalized in recyc...

متن کامل

Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles

Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve ter...

متن کامل

Expression and Purification of Neurotoxin-Associated Protein HA-33/A from Clostridium botulinum and Evaluation of Its Antigenicity

Background: Botulinum neurotoxin (BoNT) complexes consist of neurotoxin and neurotoxin-associated proteins. Hemagglutinin-33 (HA-33) is a member of BoNT type A (BoNT/A) complex. Considering the protective role of HA-33 in preservation of BoNT/A in gastrointestinal harsh conditions and also its adjuvant role, recombinant production of this protein is favorable. Thus in this study, HA-33 was expr...

متن کامل

Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine

Botulism, characterized by flaccid paralysis, commonly results from botulinum neurotoxin (BoNT) absorption across the epithelial barrier from the digestive tract and then dissemination through the blood circulation to target autonomic and motor nerve terminals. The trafficking pathway of BoNT/A passage through the intestinal barrier is not yet fully understood. We report that intralumenal admin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 320 1  شماره 

صفحات  -

تاریخ انتشار 2007